Gradio is the fastest way easily create machine learning applications with a user-friendly web interface powered by SambaNova’s Inference API.
Installation
pip install sambanova-gradio==0.1.0
Basic Usage
Just like if you were to use the sambanova
API, you should first save your sambanova API token to this environment variable:
export SAMBANOVA_API_KEY=<your token>
Then in a Python file, write:
import gradio as gr
import sambanova_gradio
gr.load(
name='Meta-Llama-3.1-405B-Instruct',
src=sambanova_gradio.registry,
).launch()
Run the Python file, and you should see a Gradio Interface connected to the model on sambanova!
Customization
Once you can create a Gradio UI from a sambanova endpoint, you can customize it by setting your own input and output components, or any other arguments to gr.Interface
. For example, the screenshot below was generated with:
import gradio as gr
import sambanova_gradio
gr.load(
name='Meta-Llama-3.1-405B-Instruct',
src=sambanova_gradio.registry,
title='Sambanova-Gradio Integration',
description="Chat with Meta-Llama-3.1-405B-Instruct model.",
examples=["Explain quantum gravity to a 5-year old.", "How many R are there in the word Strawberry?"]
).launch()
Composition
Or use your loaded Interface within larger Gradio Web UIs, e.g.
import gradio as gr
import sambanova_gradio
with gr.Blocks() as demo:
with gr.Tab("405B"):
gr.load('Meta-Llama-3.1-405B-Instruct', src=sambanova_gradio.registry)
with gr.Tab("70B"):
gr.load('Meta-Llama-3.1-70B-Instruct-8k', src=sambanova_gradio.registry)
demo.launch()